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Abstract

This paper constructs aggregate price indexes based on trade data and theory. We assess
these Open-Economy Price Indexes (OPIs) using food Engel curves from an Almost Ideal De-
mand System. Estimating this demand system with household-level consumption data from the
US, bias of any particular price index can be measured by deviation from Engel curves. Com-
paring OPIs with official CPI statistics, we find that the OPIs that use disaggregated import
price data outperform CPI in our period of study.
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1 Introduction

The impact of international trade on aggregate prices is fundamental to trade theory. A substantial
literature has developed methods to predict the aggregate price effects of trade, using detailed trade
data (Feenstra, 1994; Broda and Weinstein, 2006; Redding and Weinstein, 2020) and calibrated
quantitative general equilibrium models (Eaton and Kortum, 2002; Anderson and Van Wincoop,
2003; Arkolakis et al., 2012; Caliendo and Parro, 2015). In this paper, we build on this literature
to construct open-economy price indices (OPIs) for final consumption. We then test whether the
aggregate price changes predicted by canonical trade models are consistent with observed household
consumption patterns, allowing us to compare the bias in OPIs to that of the conventional consumer
price index (CPI)—which is subject to issues such as quality adjustment and the introduction of
new products.

Since quantitative trade theories are designed to yield price indices in line with the gravity
equation of trade, we require additional, equally well-established empirical regularities to assess
their aggregate price predictions. To this end, we use the food Engel curve, also known as Engel’s
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law (Engel, 1895)1 indicating that increases in income lead to a lower share of expenditure on food.
A body of literature has leveraged deviations from the food Engel curve to estimate bias in CPI
(Costa, 2001; Hamilton, 2001), identify bias in purchasing power parity deflators across countries
(Almås, 2012), and evaluate the accuracy of official statistics on inflation and growth (Nakamura
et al., 2016). Like this literature, we estimate food Engel curves derived from the AIDS demand
system, using U.S. household-level consumption data and measured price indices for food and non-
food goods, based on either the CPI or OPIs. Because the estimated position of the Engel curve
across household income levels depends critically on measured prices, year-to-year deviations from
these curves reveal their bias relative to the unbiased “true” prices. Unlike this literature, however,
our estimation equation includes second-order terms of log prices, and our estimates recover the full
set of AIDS preferences parameters.

To incorporate trade theory and data into our analysis, we specify household demand using a
nested structure. At the upper tier, households allocate spending between food and non-food com-
posites, following the AIDS specification described above. Within the food and non-food categories,
we assume further nested groupings that are homothetic, in line with the trade models we employ.
These broader categories aggregate over more detailed industries, each of which combines domestic
and international varieties within its corresponding industry.

We distinguish between trade models in constructing our price indexes by splitting our OPIs
under two umbrellas which are theoretically equivalent but differ in their data requirements. The
first, which we call OPI-D, emphasizes its greater reliance on domestic data. This approach uses
observed changes in domestic prices and infers changes in import prices based on expenditure shares
for foreign goods. The second approach, referred to as OPI-M, uses disaggregated data on unit
values and quantities of imported products and infers changes in domestic prices from changes in
the domestic share of expenditure.

We further distinguish two approaches to the calculation of OPI-Ms. Our first OPI-M speci-
fication follows the methodology of Feenstra (1994) and Broda and Weinstein (2006), which is an
extension of the Sato-Vartia index (Vartia, 1976). We refer to the resulting index as OPI-M1. Our
second specification, OPI-M2, follows Redding and Weinstein (2020)’s (RW) corrections of the ear-
lier methodology. The Feenstra-Sato-Vartia methodology assumes away movements of unobserved
demand shifters when assigning weights to the price of each product, whereas RW incorporates
them in the calculation of price indices. By estimating the average biases of OPI-M1 and -M2 from
the food Engel curve, we study whether, and by how much, RW’s corrections move the overall price
index closer to the true price index that consumers use in making consumption decisions.

The data used to construct the OPI indices come from product-level trade data on unit values
and quantities taken from the BACI-CEPII database, and sectoral production data from STAN. For
estimating food Engel curves, we use micro-data from the nationally representative Panel Study of
Income Dynamics (PSID) household consumption surveys. Our estimation also incorporates regional

1A large literature, e.g. Deaton and Muellbauer (1980, 1986); Banks et al. (1997); Fajgelbaum and Khandelwal
(2016), has shown that the food Engel curve is an appropriate characterization of household consumption for low-,
middle- and high-income countries.
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variation by using additional price data from the historical regional price information for goods and
services from the Council for Community and Economic Research, as well as restricted data on the
regional location of households in the PSID. Our detailed data provide the necessary variation for
our estimation equation with second-order terms of log prices, and help us identify all the AIDS
parameters.

Before evaluating the OPIs, we conduct two checks on our method. First, we find that the U.S.
CPI introduces an average upward bias of 0.7 log points per year. This result aligns with previous
studies of the U.S. CPI. For example, Gordon (2006) and Berndt (2006) report annual biases in the
range of 0.7 to 0.9 percent. Second, when we use constant prices for all years in our estimation, our
finding indicates a sizable underestimation of inflation, and the average bias is more than three times
as large as that of the official U.S. CPI. These checks suggest that our novel data and estimation
approach yield sensible results.

Our first key finding is that both of OPI-M indices exhibit less bias in tracking U.S. household
consumption decisions than the official CPI. For instance, the average bias of OPI-M1 is more than
30% lower than that of the official CPI. In contrast, OPI-D shows a similar average bias to that of the
CPI. Since OPI-M and OPI-D are theoretically two sides of the same coin, the discrepancy in their
performance stems from differences in the data requirement for their measurement. In particular,
measuring the purely domestic price component needed for OPI-D is inherently challenging, whereas
there is detailed data available for calculating the import price component required for OPI-M.
Specifically, detailed import price data allow us to incorporate the extensive margin in the calculation
of the import price index. Consumers benefit not only from price reductions on existing varieties,
but also from access to a broader range of products. In line with this argument, our decomposition,
using OPI-M2, shows that when the extensive margin is removed, the bias increases to a level similar
to that of the official CPI.

Our second key result is that OPI-M2 exhibits notably lower bias than OPI-M1, by about 40%.
Since both indices use the same data, this difference must arise from how they account for changes
in consumer tastes, as changes in product quality that shift demand beyond changes in product-level
prices. Thus, the improvement in OPI-M2 can be attributed to the internally consistent quality
measure developed by RW, rather than the Feenstra-Sato-Vartia index used in OPI-M1. This more
accurate measurement of quality changes may also explain why the average bias of OPI-M2 is less
than half of the official CPI. Indeed, a substantial body of literature, as reviewed below, has shown
that quality bias is a major reason the U.S. CPI tends to overstate cost-of-living inflation.

Lastly, we leverage our estimated parameters of the AIDS preferences under our best-performing
measured price, OPI-M2, to assess the effects of a hypothetical 10% increase in import prices on cost
of living, using 2015 as the baseline year and holding domestic prices constant. We find that OPI-
M2 would rise by 0.9% for food and 0.8% for non-food, reflecting their different exposures to trade.
Calculating the cost-of-living (COL) index by household income, we find that across households,
the average increase in COL index would be 0.8%. We also find that the changes in the COL index
are slightly regressive, as poorer households are more affected due to their higher food consumption
and the greater increase in food prices compared to non-food prices.
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Related Literature. Our study relates to several strands of research. First, a literature uses
the food Engel curve to estimate the biases in a single price index, such as the U.S. CPI or PPP
indices, e.g., Costa (2001); Hamilton (2001); Almås (2012). Relative to this literature, we estimate
a fully specified demand system. This allows us to explicitly recognize the COL index as household
specific. We also focus on the biases of the OPI indices derived from trade theory. Relatedly, a
large body of research has shown that quality and new-goods biases are important reasons why the
U.S. CPI overstates true inflation, e.g., Moulton (1996); Hausman (2003).2 Our results suggest that
the estimated CPI biases could be related to mismeasured gains from trade, which, when measured
based on trade theory, can capture adjustments in quality as well as the entry and exit of product
varieties.

In turn, the impact of trade on prices has been the focus of a substantial body of literature.
One approach, following Feenstra (1994), utilizes detailed product-level trade data, while another
demonstrates the usefulness of sufficient statistics in quantitative general equilibrium trade models,
as reviewed by Costinot and Rodríguez-Clare (2014).3 Using these tools, several studies provide
evidence on specific cases. For example, to study the impact of Chinese imports on U.S. con-
sumer prices Amiti et al. (2020) employ the import-price-index approach, while Bai and Stumpner
(2019) use the sufficient-statistics approach. In our analysis, we provide evidence that households’
consumption decisions, as revealed by the food Engel curve, is consistent with real consumption
gains predicted by this literature. We also clarify which specific margins contribute to reducing
biases in OPI measures. Complementing this literature, Jaravel and Sager (2025) use detailed price
microdata to causally link increases in Chinese import penetration to lower U.S. consumer prices
and domestic markups. Rather than studying the underlying mechanisms behind consumer price
changes at the level of products, we use household expenditure data to evaluate aggregate price
indexes constructed directly from import unit values, trade shares, and domestic production data.

Our work also relates to research on the exact cost-of-living index under non-homothetic pref-
erences. Baqaee and Burstein (2021) show that it is difficult to address non-homothetic preferences
and mismeasured prices simultaneously, and so this literature typically assumes that well-measured
prices are available.4 Atkin et al. (2020) use relative Engel curves and well-measured prices for a
subset of goods.5 In comparison, we start from the premise that well-measured prices, adjusted
for quality and variety, are difficult to obtain for most merchandise goods, and so our goal and

2See also Shapiro and Wilcox (1996); Boskin et al. (1997); Moulton et al. (1997); Berndt (2006); Gordon (2006);
Greenlees and McClelland (2011); Melser and Syed (2016).

3See also Arkolakis et al. (2008); Balistreri et al. (2011); Ossa (2015); Hsieh and Ossa (2016); Levchenko and
Zhang (2016) and Giri et al. (2021), among others. Some studies have also examined the pro-competitive effects of
trade through markups (e.g., Feenstra and Weinstein (2017)), which we do not explore in our analysis. Others have
investigated various channels beyond the canonical models we consider, such as search frictions (e.g., Krolikowski and
McCallum, 2021; Eaton et al., 2021, 2022), specifics of trade in commodities (e.g., Farrokhi 2020; Fally and Sayre
2018), global value chains (e.g., Antràs and De Gortari, 2020), and multinational production (e.g., Arkolakis et al.,
2018; Du and Wang, 2021), among other channels.

4See also Fajgelbaum and Khandelwal (2016); Borusyak and Jaravel (2018); Almås et al. (2018); Argente and Lee
(2021); Auer et al. (2022).

5In theory, computation remains valid without well-measured prices under an orthogonality condition, but well-
measured prices are needed to test this condition. In the data, Atkin et al. (2020) show that this orthogonality
condition is a good approximation for rural Indian households.
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approach differ from this literature. Still, our results and those of Atkin et al. (2020) both show
that price indices correcting for quality and variety exhibit lower increases over time relative to the
official CPI.

Lastly, to assess the validity of quantitative trade models, Kehoe et al. (2015) and Kehoe et al.
(2017) compare observed changes in trade flows with those predicted by applied general equilibrium
(AGE) models in response to specific trade policies like NAFTA. In turn, Adão et al. (2025) introduce
a goodness-of-fit measure that accounts for the fact that observed data reflect not only the effects
of a specific policy of interest but also changes in other policies and market conditions. Our work
contributes to this literature by using deviations from the food Engel curve as a basis for evaluating
trade models’ predictions of price indices.

Roadmap. The remainder of the paper is organized as follows. Section 2 explains how we estimate
the food Engel curve to assess and compare biases in measured price indices. Section 3 outlines our
basic approach to calculating OPIs with a simple example. Section 4 details our full model and the
OPI calculation procedure. Section 5 describes the data and presents preliminary analysis. Sections
6 presents our results and discuss their implications. Section 7 considers a few extensions to our
analysis. Section 8 concludes.

2 Comparing Price Indices Using Household Consumption Data

Our approach is inspired by Costa (2001) and Hamilton (2001), but it also introduces some key
differences by deriving our estimation equation explicitly from an AIDS demand system. We begin
by outlining our method for estimating the food Engel curve, which allows us to recover the bias in
measured prices. We then describe how we rank and compare these measured prices.

2.1 Households’ Consumption and Food Engel Curve

Consider households indexed by h in region r and year t, with their preferences represented by
an Almost Ideal Demand System (AIDS) à la Deaton and Muellbauer (1980). Let Et

h and P̃t
r =

(P̃ t
r,F , P̃

t
r,N ) denote household expenditure, and “true” price indices of food (F ) and non-food (N),

which vary by year t and region r. The indirect utility function for the corresponding household is
given by:

U t
h = U(Et

h, P̃
t
r) =

lnEt
h − ln Γ(Pt

r)

Λ(Pt
r)

, (1)

where Γ(.) and Λ(.) are given by:ln Γ(P̃t
r) = α0 + αF ln P̃ t

F,r + (1− αF ) ln P̃
t
N,r +

γ
2

(
ln P̃ t

r,F − ln P̃ t
r,N

)2
ln Λ(P̃t

r) = lnβ0 + βF ln P̃ t
r,F + (1− βF ) ln P̃

t
r,N

(2)
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and {α0, αF , γ, β0, βF } are time-invariant parameters. By utility maximization, the expenditure
share of food, λt

h,F ≡ P̃ t
r,FQ

t
h,F /E

t
h, equals:

λt
h,F = δ0 + βF lnEt

h + δF ln P̃ t
r,F + δN ln P̃ t

r,N + δX

(
ln P̃ t

r,F − ln P̃ t
r,N

)2
, (3)

where the auxiliary coefficients {δ0, δF , δN , δX} are defined as:

δ0 ≡ αF − βFα0, δF ≡ γ − βFαF , δN ≡ −γ − βF (1− αF ) , δX ≡ −βFγ

2
(4)

Equations (3)-(4) are the theoretical motivation for a large body of work that estimates food Engel
curves. The sign and magnitude of the income coefficient, βF , indicate whether food is a luxury
(βF > 0), a necessity (−λF < βF < 0, where λF is the mean food expenditure share), or an inferior
good (βF < −λF ). The coefficient, γ, can be either positive or negative, depending on the price
elasticity of demand for food. Specifically, Equation (3) implies that (i) the income elasticity of
food for the average household is:

∂ lnQF

∂ lnE
= 1 +

βF

λF

, (5)

where QF is the mean food consumption quantity, and (ii) the own price elasticity of food for the
average household is:

∂ lnQF

∂ ln P̃F

=
1

λF

(
γ − βF

(
αF + ln

P̃F

P̃N

))
− 1. (6)

2.2 Evaluating Biases in Measured Prices Using Food Engel Curves

To estimate the food Engel curve, Equation (3), we use data on observed households’ total expen-
diture, Et

h, food expenditure share, λt
h,F , and “measured” prices of food and non-food, denoted by

Pt
r = (P t

r,F , P
t
r,N ). The challenge is that any vector of measured prices is constructed subject to

potential biases relative to the vector of true prices, P̃t
r = (P̃ t

r,F , P̃
t
r,N ). Specifically, the log true

price can be expressed as the sum of log measured price and a potential bias:

ln P̃ t
r,j = lnP t

r,j + lnBt
r,j , j = F,N ; (7)

where Bt
r,j denotes the bias, which can be further decomposed to regional and annual components

as:
lnBt

r,j = br,j + btj + εtr,j j = F,N. (8)

Inserting Equations (7)-(8) into Equation (3) delivers food Engel curves evaluated at measured
rather than true prices. To estimate the resulting equation, we make the following assumption:

Assumption 1. (a) Region- and year-specific components of biases in Equation (8) are common
between measured prices of food and non-food, i.e., br,j = br, b

t
j = bt for j = F,N . (b) The error

terms εtr,j are uncorrelated with income, measured prices and region or year fixed effects, and their
difference variance is stable over time, E(εtr,F − εtr,N )2 = vr.
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Assumption 1 underpins the identification of food Engel curves in our estimation. Part (a) states
that biases over time and across regions are common across goods. Intuitively, we have only one
Engel curve at each region and time, so we cannot identify more than one region and one time fixed
effect. We need the assumptions in Part (b) in order to consistently estimate the model coefficients
as well as the common region and time biases using standard OLS with fixed effects.

Under Assumption 1, the food Engel equation, (3), evaluated at measured prices, becomes:

λt
h,F = δr + δt + βF

(
lnEt

h − lnP t
r,N

)
+ δF

(
lnP t

r,F − lnP t
r,N

)
+ δX

(
lnP t

r,F − lnP t
r,N

)2
+ uth, (9)

where uth is mean zero and uncorrelated with the regressors, the region fixed effect is δr ≡ −βF br+vr

and the year fixed effect, which is referred to in the literature as “drift”, corresponds to δt ≡ −βF b
t.

Note that δt is normalized to 0 for the initial year in the sample, t = 0, with the aid of regional
fixed effects. Estimating (9) pins down β̂F and δ̂t which we use to recover the common annual bias
of prices:

b̂t =
1

β̂F
δ̂t (10)

Equations (9) and (10) allow us to rank and compare across different vectors of measured prices.
To be specific, let the subscript m denote a specific vector of measured prices, such as official CPI,
or an open-economy index, labeled as “OPI”, constructed based on the gains-from-trade analyses.
We compute the vector of food and non-food prices, (P t

r,F,m, P t
r,N,m), use them to estimate Equation

(9), recover the biases, b̂tm, according to Equation (10), and compute the root-mean square of the
biases based on the following expression:

RMSBm =

(
1

T

T∑
t=1

(b̂tm)2

) 1
2

, (11)

where T is the number of years in the sample. Our logic is simple: if an OPI yields a sufficiently small
RMSBm, it is empirical evidence that the underlying gains-from-trade framework that generates this
OPI is consistent with U.S. household consumption decisions. Needless to say, whether RMSBm is
“large” or “small” is relative, and so we use the official U.S. CPI as the benchmark; i.e. we evaluate
each OPI against CPI using the metric of (11). We will also supplement the numerical values of
RMSBm with plots of b̂tm and their confidence intervals.

Lastly, we can recover γ and αF using Equation (4) and estimates of δ̂F and δ̂X ,

γ̂ = − 1

β̂F
× 2δ̂X , α̂F = − 1

β̂F
×

(
δ̂F +

2δ̂X

β̂F

)
(12)

Discussion We now explicitly compare our approach with the literature, primarily Costa (2001),
Hamilton (2001), and Nakamura et al. (2016), among others who have relied on food Engel curves
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for empirical study of price indices. To start, we re-write Euation (3) as:

λt
h,F = αF + βF

(
lnEt

h − ln Γ(P̃t
r)
)
+ γ

(
ln P̃ t

r,F − ln P̃ t
r,N

)
, (13)

where ln Γ(P̃t
r), given by Equation (2), serves as an income deflator. Using the first-order ap-

proximation ln Γ(P̃t
r) ≈ ln P̃ t

r = α0 + αF ln P̃ t
r,F + (1 − αF ) ln P̃

t
r,N , and by specifying the bias as

in Equation (7) and adopting identification assumptions similar to Assumption 1, the literature
reaches to an estimation equation of the following form:

λt
h,F = δr + δt + βF

(
lnEt

h − lnP t
)
+ δF

(
lnP t

r,F − lnP t
r,N

)
+ uth. (14)

The differences between our approach and that of the literature are as follows. First, our
specification, Equation (9), does not make the approximation for ln Γ(P̃t

r), and so explicitly includes
the square of the log of the relative price of food to non-food. This allows us to recover the bias in
measured price indices via Equation (10), as the literature does, as well as to retrieve the values of
the underlying parameters of the AIDS preferences of (1)-(2), via Equation (12). These parameter
values are important for our welfare calculations and counterfactuals in sub-section 6.2 below.

Second, the literature uses the recovered bias from (10) to construct the single price index of
P t+ b̂t, and interprets it as the true price index of the economy. In comparison, we do not aggregate
the prices of food and non-food, because we recognize that AIDS preferences imply that the cost-
of-living index varies with household income.6 Instead, we use the recovered bias from (10) to
evaluate how a vector of measured price indices of food and non-food compares with another vector,
as revealed by the Food Engel curve.

In summary, relative to the literature, our empirical approach has a tighter connection with
the underlying preferences and is more akin to structural estimation. Later, in sub-section 5.2, we
clarify that we also use disaggregated data on the prices of food and non-food for our estimation.

3 Sketching the Idea: Open-Economy Price Indices

In this section, we use a toy model to illustrate how we construct the price indices that are implied by
the gains-from-trade literature. We leave out the time superscript to keep our exposition compact.
We set up our full model in the next section.

Suppose that the world economy consists of multiple countries, and a single sector. Goods
are differentiated by country of production, indexed by j = 1, ..., N . Preferences are CES with
substitution elasticity σ and demand shifters bj . Consider a country called Home. Then, the CES
price index in Home is

P =

 N∑
j=1

bj (Pj)
1−σ

 1
1−σ

. (15)

6This can be seen from Equation (1) wherein the change to utility, d lnU t
h , differs from the change to income Et

h

deflated by Γ(P̃t
r), i.e, d(ln(Et

h − ln Γ(P̃t
r)).
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A large body of work in the gains-from-trade literature goes after the same objective, which is, in
its simplest form, the change to the CES price index specified in equation (15). We denote this
change between two time periods by P̂ = P 1/P 0, which we refer to as OPI. We now outline two
approaches to compute OPI.

3.1 OPI-D

Our first approach draws on the literature that uses sufficient statistics à la Arkolakis et al. (2012)
to compute general equilibrium changes to prices. Specifically, the change to the price index, P̂ ,
can be expressed as:

P̂ = P̂D
(
π̂D
) 1

σ−1 , [OPI-D] (16)

This equation shows that, given data on the change in domestic expenditure share π̂D and the price
of the domestic variety P̂D, we can compute the change in the overall price index, P̂ . Intuitively,
when the domestic expenditure share decreases, it suggests that the price index for imported varieties
has declined relative to the price of the domestic variety. This relationship is governed by the
elasticity parameter (σ − 1), which is why P̂D must be adjusted by the term

(
π̂D
) 1

σ−1 . We refer to
the OPI based on Equation (16) as OPI-D, where “D” stands for domestic.

A special case of Equation (16) delivers the gains from trade, defined as the loss in real income
from moving the economy to autarky. This case, referred to in the literature as the ACR formula,
corresponds to π̂D = 1/πD where πD is the baseline (observed) value of the domestic expenditure
share, and P̂D = ŵ where ŵ is the change to the nominal wage in Home. In that case, the change
to real income, ŵ/P̂ , is given by

(
πD
) 1

σ−1 .

3.2 OPI-M

Our second approach draws on the literature that uses detailed import data to examine the gains
from trade. Here, we use data on foreign variety-level prices, pj , and demand shifters, bj , recovered
from import shares, to compute the OPI. We refer to the resulting price index as OPI-M, where
“M” stands for imports.

Specifically, varieties available to Home can be partitioned into domestic and imported varieties,

whose price indices are, respectively, PD and PM ≡
[∑

j ̸=D bj (pj)
1−σ
] 1

1−σ . This allows us to
re-write Equation (15) as

P̂ = P̂M
(
π̂M
) 1

σ−1 , [OPI-M] (17)

where πM = 1− πD is the imported share of expenditure. To see the intuition, consider a decrease
in the import share, πM , as households shift to domestic goods. This suggests domestic prices have
fallen relative to import prices. Thus, we adjust the import price change downward by the import
share decrease to accurately reflect the overall index change, OPI-M.

Equation (17) is the mirror image of Equation (16). This result is intuitive: OPI-M and OPI-D
are two sides of the same coin. Although both calculate the change in the CES price index in Equa-
tion (15), they use different data. As a result, in practice they will likely generate different values
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of OPI, and so provide two complementary approaches to taking the gains-from-trade predictions
to household consumption data.

4 A Framework for Computing Open-Economy Price Indices

Our full model is designed to bring the simple model of Section 3 to data. To this end, we begin with
specifying the space of products. This specification is motivated by (i) the availability of micro data
that can be used to construct the OPIs, and (ii) the manner in which non-homothetic preferences,
which motivate the food Engel curve, can be combined with homothetic CES preferences.

Figure 1: Product Space

Notes: This figure shows the space of products and the nesting structure used in our analysis. N1, N2 etc. denote
the numbers of goods within each sector.

We illustrate the space of products in Figure 1. The consumption of each household at time t

consists of two broad groups, food (F ), and non-food (N). This non-homothetic upper-tier demand
gives rise to the food Engel curve as discussed in Section 2.1. The non-food group includes two
categories, tradeable merchandise (G) and nontradeable services (V ), and the food group is its own
category. We model services as non-tradable because the data for import prices are for merchandise
only. Within each category c ∈ {F,G, V }, there are multiple sectors indexed by s, with the food
category F consisting of sector s = {1}, non-food tradeable category consisting of s = {2, ..., S−1},
and nontradeable non-food V consisting of s = {S}.

We next explain how we follow the trade literature to construct different specifications of the
OPI-D and OPI-M indices for the homothetic categories F , G and V . We then show how we
aggregate across categories to the food and non-food groups, the highest aggregation level that is
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not income specific, given the non-homothetic preferences between groups.
We assume that the sub-utility for sectors s = {1, ..., S − 1} is CES with substitution elasticity

σs. We can then express the price index of sector s by adding the sector subscript s and time
superscript t to equations (16) and (17), namely:

P̂ t
s =

P̂D,t
s (π̂D,t

s )
1

σs−1 [OPI-D]

P̂M,t
s (π̂M,t

s )
1

σs−1 [OPI-M]
(18)

To calculate OPI-M and OPI-D indices of P̂ t
s , we require data on changes to imported and domestic

expenditure shares, πM,t
s = 1 − πD,t

s , and estimates of trade elasticities, σs, as well as sector-level
import and domestic price indices, PM,t

s and PD,t
s . Below, we present further assumptions that we

invoke to calculate OPI-M and OPI-D at the level of sectors, and then spell out our aggregation.
We discuss our sources of data and estimates in Section 5.

OPI-D. We calculate OPI-D according to the first line of equation (18). To this end, we require
estimates of trade elasticity (σs − 1) and observed changes to domestic expenditure shares π̂D,t

s , in
addition to measures of sectoral domestic price, P̂D,t

s , as discussed in Section 5.

OPI-M. We consider two major approaches in the literature to calculate import price indices,
PM,t
s . The first follows Feenstra (1994) and Broda and Weinstein (2006) which we refer to as

“FBW”. The second follows Redding and Weinstein (2020) which we refer to as “RW”.7

To compute PM,t
s , we add a CES layer within each tradable sector. With this additional layer,

PM,t
s captures the effects of variety entry and exit more accurately. To be specific, for the sectors

in the tradable categories of food, F , and other merchandise, G, s = {1, ..., S − 1}, PM,t
s is a CES

aggregate across imported goods, indexed by g, whose price indices are PM,t
gs . The imported goods

are shown as the bottom-most nodes in Figure 1, and the substitution elasticity among them, within
sector s, is σM

s . This implies that we can construct the sector-level price, PM,t
s , from goods-level

prices, PM,t
gs , using the standard Sato-Vartia aggregation:

P̂M,t
s =

∏
g∈Ωs

(P̂M,t
gs )d

t
gs , where dtgs =

(λt
gs − λ0

gs)/(lnλ
t
gs − lnλ0

gs)∑
g∈Ωs

(λt
gs − λ0

gs)/(lnλ
t
gs − lnλ0

gs)
(19)

In Equation (19), Ωs is the set of goods within sector s which does not change over time. λt
gs

is the share of good g in import value within sector s in time t, and dtgs is the corresponding Sato-
Vartia weights by good, computed as the log mean of λt

gs and λ0
gs, the goods’ import-value shares in

time t and in the base period of 0. Equation (19) is common to both the FBW and RW procedures.
Each good, in turn, is differentiated into varieties, indexed by j, whose prices are ptj,gs. The

substitution elasticity between the varieties within good g is σg, and their taste parameters are
btj,gs. These tastes can reflect a variety’s quality, or any other demand shock. The set of varieties

7For details on our formulas and derivations in this subsection, see Appendix B.1.
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within g, ΩM,t
gs , may change over time. Let ΩM

gs denote the common set, or the set of varieties that
are present in both time t and the base period 0. The good-level import price index P̂M,t

gs can be
expressed as:

P̂M,t
gs = (λ̂∗t

gs)
1

σg−1
∏

j∈ΩM
gs

(p̂tj,gs)
dtj,gs , where λ∗t

gs =

∑
j∈ΩM

gs
ptj,gsq

t
j,gs∑

j∈ΩM,t
gs

ptj,gsq
t
j,gs

. (20)

In Equation (20), ptj,gsq
t
j,gs is the import value of variety j at time t, and λ∗t

gs is the import-value
share of the common set in t. The first factor on the right-hand side of Equation (20) captures the
contribution to the good-level import price index from variety entry and exit. Intuitively, a rise in
import values on new varieties at t implies a lower λ∗t

gs relative to λ∗0
gs, and leads to a fall in the

overall index, P̂M,t
gs . This factor is the same for both the FBW and RW procedures. The second

factor in (20) captures the price changes that come from continuing varieties and it is different for
the FBW and RW procedures.

The FBW procedure applies the standard Sato-Vartia weights of log means to the variety level:

dtj,gs =
(λt

j,gs − λ0
j,gs)/(lnλ

t
j,gs − lnλ0

j,gs)∑
j∈ΩM

gs
(λt

j,gs − λ0
j,gs)/(lnλ

t
j,gs − lnλ0

j,gs)
, (21)

where λt
j,gs is the import-value share of variety j within the common set, ΩM

gs . Within this common
set, the FBW procedure assumes, in addition, that the taste parameters of every variety remain
unchanged over time; i.e b̂tj,gs = 1 for all j ∈ ΩM

gs . Redding and Weinstein (2020) point out that
the use of the weights from Equation (21) are incompatible with the assumption of constant taste
parameters, and show, instead, that their changes over time can be recovered from the residual of
import-value shares conditional on observed prices, under the weaker assumption that taste changes
are zero, on geometric average, within the common set. To show this point explicitly, let x̃ denote
the simple geometric mean across varieties in the common set for variable x. Then the assumption
of zero taste changes on average can be expressed as b̃tgs = b̃0gs for all t, and the over-time changes
to variety-level taste parameters can be recovered as follows:

(
ln btj,gs − ln b0j,gs

)
= ln

[(λt
j,gs

λ̃t
gs

)/(λ0
j,gs

λ̃0
gs

)]
− (1− σg) ln

[(ptj,gs
p̃tgs

)/(p0j,gs
p̃0gs

)]
(22)

This expression implies the following modified Sato-Vartia weights for the RW procedure:

dtj,gs =

(
λt
j,gs − λ0

j,gs

)/(
(lnλt

j,gs − lnλ0
j,gs)− (ln btj,gs − ln b0j,gs)

)
∑

j∈IMg

(
λt
j,gs − λ0

j,gs

)/(
(lnλt

j,gs − lnλ0
j,gs)− (ln btj,gs − ln b0j,gs)

) , (23)

where (ln btj,gs − ln b0j,gs) is given by Equation (22). The price index calculated based on these
modified weights precisely reproduces the price index of equation (8) in Redding and Weinstein
(2020), as shown in Appendix B.
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Using sectoral import prices P̂M,t
s , that are given by Equations (19) and (20), we apply the

OPI-M version of Equation (18) to calculate sectoral prices, P̂ t
s . In our calculations, we utilize two

different sets of weights:

1. FBW weights d̂tj,gs from equation (21).

2. RW weights d̂tj,gs from equation (23).

We refer to the price indices that use FBW weights as “OPI-M1”, and those that use RW weights
as “OPI-M2.”

The resulting OPI-M indices have three components: the intensive margin, or the price changes
within the common set; the extensive margin, or variety entry and exit; and the import-share
adjustment, (π̂t

M,s)
1

σs−1 , which corrects for changes in the relative price of imports.8

Aggregation. We now use sectoral prices P̂ t
s of equation (18), either OPI-D, or OPI-M1 and -M2

to construct price indices of food, F = 1, and non-food N . The latter is an aggregation of tradable
sectors s = {2, ..., S − 1} and non-tradable services, V = S:P̂ t

F = P̂ t
1 [Food]

P̂ t
N =

[∏S−1
s=2 (P̂

t
s)

βs,t

]1−βS,t

× (P̂ t
S)

βS,t [Non-food]
(24)

Here, βs,t represents the share of consumer expenditure on sector s within the non-food tradable
category, while βS,t is the expenditure share on non-tradable services. Both shares are allowed to
vary over time t.

5 Data and Preliminary Analyses

In this section, we first briefly outline our data and parameter values, relegating the full details to
the Data Appendix. We then show the salient features of our data, and conduct preliminary data
analyses.

5.1 Data Sources and Parameter Values: Outline

Micro Data for the Food Engel Curve. We use data from the Panel Study of Income Dynamics
(PSID) to obtain household-level information on food consumption share and income. The PSID
provides annual data for 1995-1996 and biannual data for 1997-2015. In addition, the PSID includes
a rich set of household characteristics, such as age, education, and number of children, which we
use as additional controls in Equation (9). All of these variables are available in the public version
of the PSID. However, identifying regression (9) also requires region fixed effects. For this, we use
confidential PSID data that provide the county geo-codes where households are located.

8In the literature, Feenstra (1994) and Broda and Weinstein (2006) focus on import price indices, and do not include
import-share adjustments. Redding and Weinstein (2018), however, include this margin in their decomposition of
the US aggregate price index.
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The remaining variables needed to estimate equation (9) are the prices of food and non-food,
which vary by region and year. To capture regional price variation, we use data from the Cost of
Living Index (COLI), compiled by the Council for Community and Economic Research (Council for
Community and Economic Research, 2025). The COLI is based on prices of goods sampled at the
metropolitan statistical area (MSA) level across the United States, which we map to the level of
counties to augment with PSID information. We aggregate these prices to obtain COLI indices of
food and non-food, expressed as regional deviations from the national average, which we denote by
P t
r,g,COLI with g referring to food or non-food in region r and year t. We then combine these regional

indices with national indices, either the OPI or CPI, to calculate P t
r,F and P t

r,N . Specifically,

P t
r,g = P t

r,g,COLI × P t
g , g ∈ F,N, (25)

where P t
r,g,COLI is the regional COLI index and P t

g is the corresponding national OPI or CPI index.
Our approach assumes that, within each year, regional differences in consumer prices are consistent
across the various measured price indices.

Finally, we use the confidential PSID county codes to match households to the appropriate MSA-
level measures from the COLI. This allows us to construct all the variables needed for estimating
equation (9).

Macro Data for OPI-D and OPI-M We obtain OECD STAN data on gross production, exports
and imports by sector by year. The STAN sectors are at the aggregate level of two-digit ISIC codes
(International Standard Industrial Classification, version 4). Table 1 lists our 12 tradable sectors,
one for the category of food, F , which aggregates over Agriculture and Manufacturing of Food, and
11 for non-food merchandise, G.

Table 1: Tradeable Sectors

ISIC Code Description

1 01-03 & 10-12 Food & Agriculture
2 13-15 Textile and Apparel
3 16-18 Wood and Paper
4 19 Refined Petroleum
5 20-21 Chemicals
6 22 Plastics
7 23 Minerals
8 24-25 Metals
9 26-28 Machinery and Electronics

10 29-30 Transport Equipment
11 31-32 Furniture & Other Mfg.
12 05-08 Mining

Notes: This table shows our food and non-food tradable sectors and their corresponding ISIC rev. 4 codes.

Our STAN data provide the values of the imported expenditure share, πM,t
s (e.g. equation 18),

as imports divided by apparent consumption (i.e, gross output minus exports plus imports). The
domestic expenditure share, πD,t

s is simply 1− πM,t
s .
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The food Engel curve is based on household consumption data, while products of some the
sectors listed in Table 1 are not directly purchased by consumers (e.g. Mining). To address this
concern, we obtain the consumption shares from the World Input-Output Database (WIOD) for
the 11 non-food merchandise sectors in the category G. We then compute the relative consumption
shares from WIOD, and multiply them by the CPI weight of category G to obtain βs in OPIs
in Equation (24). For the aggregation into the non-food group of N , we obtain the category-
level U.S. CPI weights from the BLS (Bureau of Labor Statistics), βt

V,CPI and βt
G,CPI , and set

βS,t = βt
V,CPI/(β

t
V,CPI + βt

G,CPI).

Domestic Price, for OPI-D A challenge we face in bringing our formulas to data is that it is
rare for researchers to directly observe the prices of domestic varieties,9 from which the measure of
domestic price inflation, P̂D,t, can be constructed. As a result, we use the price indices constructed
and published by national statistical agencies. While a candidate for measuring domestic price
inflation might seem to be CPI itself, note that CPI captures movements in import prices as well,
leading to double counting.

The way we address this issue is motivated by our focus on comparing OPIs with statistical
measures of price indices, like CPI itself. In this regard, we want a measure of domestic price
inflation that can be thought of as the domestic component of the official CPI inflation for the
groups of food and non-food, P̂D,t

CPI,g, g = F,N . Specifically we use sector-level import price indices
provided by FRED and their corresponding weights to compute the statistical food and non-food
import price indices, P̂ t

IMP,g,g = F,N . We then recover P̂D,t
CPI,g by assuming that, at the sector level,

the CPI reflects a combination of import and domestic price indices, weighted by their respective
import and domestic expenditure shares. We obtain:

P̂ t
D,CPI,g =

[(
P̂ t
CPI,g

)/(
P̂ t
IMP,g

)πt
M,g

] 1

1−πt
M,g , (26)

where g indexes food (F ) and non-food (N), and πt
M,g denotes the imported expenditure share of

g in year t. Equation (26) says that if official import price indices, P̂ t
IMP,g, measure inflation due

to imports, then removing P̂ t
IMP,g from its corresponding CPI value gives us a measure of domestic

inflation, P̂ t
D,CPI,g, which we use as domestic price change for food and non-food.10

Trade Data and Parameter Values, for OPI-M We draw on standard publicly available
data for variety-level international trade (BACI-CEPII) information on unit values and expenditure
shares on imported products, which we use in the construction of OPI-M1 and -M2. We then draw
on the literature for the values of substitution elasticities: the goods-level substitution elasticity,
σg in equations (20) - (23), and σs from equation (18), which is the sectoral substitution elasticity

9An exception is Auer et al. (2022), who identify source countries from the product labels for a subsample of the
universe of products in the Swiss market.

10Note that P̂IMP,g is the import price index by the official U.S. statistical agency, and distinct from the OPI-M
indices that we construct in this study.
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between imported and domestic bundles in OPI-M and the trade elasticity in OPI-D. For σg, we take
the estimates from Broda and Weinstein (2006) at the level of 3-digit SITC (Standard International
Trade Classification) codes. We have slightly over 200 SITC goods; e.g. footwear, metal containers
for storage or transport, and food-processing machines.11 We set σs as the mean values of {σg}
across goods g in sector s, following Imbs and Mejean (2015). As reported in the appendix, the
sectoral elasticities (σs) range from about 2 for sectors such as Plastics, Electronics, and Machinery,
to as high as 26 for Mining. These values are consistent with the range of estimates found in
the trade literature.12 We also experiment with alternative values of these elasticities, and obtain
similar results as shown in Appendix A.3.1. Lastly, note that we do not require the σM

s values in
our computation, as shown in equation (19). This is because we assume the set of goods is fixed as,
unlike varieties, there is no entry or exit of goods.

5.2 Main Data Features

Domestic Shares Patterns of sector-level domestic expenditure shares play an important role in
the construction of the OPI indices. Figure 2 plots the U.S. domestic expenditure share by sector by
year, where the sectors are in the tradable categories of food and non-food merchandise. A salient
feature is that US domestic expenditure shares over the period of 1995-2015 tended to decrease
or stay unchanged, and they rarely increased. The decrease in domestic expenditure share has
been particularly notable in Textile and Apparel, Chemicals, Plastics, Machinery and Electronics,
and Furniture and Other Manufacturing. These decreases are likely driven by the global wave of
trade liberalizations in the 1990’s and early 2000’s, such as China’s rise starting in the early 1990s
(e.g. Autor et al. 2013) and its subsequent WTO accession in 2001, the signing of NAFTA in
1994, and the expiration of the Agreement on Textiles and Clothing quotas in 2005, among other
considerations.13

Empirical Engel Curves Our framework does not treat food and the other merchandise sectors
symmetrically. Food is its own category and its own group (e.g. Figure 1), while other merchandise
sectors are rolled together into a single category Non-Food. We choose to separate our sectors this
way because of the well-documented nearly linear empirical relationship between food expenditures
and log household income. This relationship is known as Engel’s law,14 which we illustrate in Figure

11One may be concerned about the large number of parameters involved. In the Data Appendix, we show that we
obtain similar results for OPI-M if we apply σs to all the goods within sector s. Note that the OPI-D indices do not
require the parameters σg.

12As we use changes in disaggregated unit values in our analysis, our results are sensitive to outliers. We follow the
previous literature in cleaning outliers in a theoretically-consistent manner without excluding them from our analysis
(Redding and Weinstein, 2020). Details can be found in Data Appendix A.

13Additional examples of trade liberalizations involving the U.S. are as follows. The tariff cuts under the U.S.-
Canada Free Trade Agreement were not complete until the end of 1998 (e.g. Lileeva and Trefler 2010), and the U.S.
substantially lowered tariffs on Vietnamese products after the U.S.-Vietnam Bilateral Trade Agreement in 2001 (e.g.
McCaig 2011).

14Moreover, the empirical relationship between log household income and the shares of sub-categories of food, or
that between log income and shares of non-food products such as clothing, is not as stable across countries and
time(e.g. Banks et al., 1997, Atkin et al., 2020).
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Figure 2: Domestic Share by Sector, U.S.

Notes: This figure shows the US domestic expenditure share for each industry between 1995 and 2015. The domestic
share is the ratio of gross output minus exports to total absorbtion (which is gross output minus exports plus imports),
the data of which come from STAN.

3. We divide households into deciles of residualized expenditure, and plot the mean residualized
share of expenditures on food against the residualized mean log income. We plot residuals rather
than levels as we would like to control for household characteristics such as the number of children
and marital status. We see that food share decreases with log income, and that the relationship
between food share and log income is close to a linear relationship. Figure 3 confirms that the
Engel’s law is a salient feature of our data.

6 Results

In this section, we report our results. We start with the preliminary results, in which we validate
our approach of using the food Engel curve to estimate the bias of measured price indices. We then
discuss our main results for OPI-M and OPI-D. Finally, we use OPI-M2, the OPI with the best fit
of the food Engel curve, to show additional applications of our OPI indices in terms of welfare and
simple counterfactuals.

6.1 Preliminary Results

As a first validation for our bias estimation method, we examine the estimates of the bias of the
official U.S. CPI that our framework produces. Ever since the Boskin report (Boskin et al., 1997),
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Figure 3: Food Expenditure Share against Log Income

Notes: This figure shows the food expenditure share against log of expenditures along ten bins of the log expenditure
distribution. Both food expenditure share and expenditures are residualized on household characteristics age, hours
worked, education of the household head and spouse, number of children, and census region.

there have been extensive studies of the U.S. CPI, and this literature has reached the consensus
that the U.S. CPI is upward-biased. That is, using CPI as a deflator understates real income. Here,
we are interested in comparing the bias estimates of the U.S. CPI from our analysis that is based
on inference from the food Engel curve, with the estimates from this literature that are based on
different approaches.

We use the official U.S. CPI to measure the prices of food and non-food in regression (9), and
include the following household characteristics as controls: the number of children, the age, hours
and education of the household head, and the age, hours and education of the spouse. We report
the results in column (2) of Table 2. We see that the log-income coefficient, βF in equation (9),
is negative and significant. The statistical significance of the βF estimates and the high R2 show
that the food Engel curve is an empirical regularity in household survey data.15 Meanwhile, the

15Previous studies listed in Footnote 1 that have estimated the food Engel curve for different time periods and
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year-dummy estimates under CPI are negative, and they are mostly statistically significant. These
results provide evidence that our methodology correctly identifies the upward bias of the U.S. CPI,
qualitatively. In addition, using equation (11), we are able to compute that the root mean squared
bias, or RMSB, for U.S. CPI in our sample is 0.070. In other words, our estimates indicate that the
U.S. CPI produces an upward bias of 0.70 log points on average per year. In comparison, Shapiro
and Wilcox (1996) show that there is an 80% probability that the CPI bias lies between 0.6% and
1.5% per year, Gordon (2006) reports an annual bias of 0.8%, and Berndt (2006) reports 0.73%-
0.9%. The similarity between our results and the literature provides evidence that our methodology
also correctly identifies the upward bias of the U.S. CPI quantitatively.

Table 2: Food Engel Curve: CPI, Constant Price, and OPIs

Model Ln(Income) Ln(Pf/Pn) Ln(Pf/Pn)2

CPI -0.0826*** 0.0565*** -0.0650***
(0.00138) (0.00690) (0.01950)

Constant -0.0825*** 0.0553*** -0.0636***
(0.00138) (0.00706) (0.0192)

OPIM-1 -0.0825*** 0.0540*** -0.0498**
(0.00138) (0.00789) (0.01550)

OPIM-2 -0.0825*** 0.0578*** -0.0446**
(0.00138) (0.00751) (0.01650)

OPI-D -0.0825*** 0.0610*** -0.0587**
(0.00138) (0.00638) (0.01850)

OPIG-1 -0.0825*** 0.0588*** -0.0595**
(0.00138) (0.00664) (0.01850)

OPIG-2 -0.0825*** 0.0583*** -0.0602**
(0.00138) (0.00668) (0.01860)

Notes: Each regression includes control variables for age, hours, and education of both head and spouse, and number of
children, along with year dummies which are reported in Appendix Table A.3. Robust standard errors in parentheses.
* p<0.05, ** p<0.01, *** p<0.001.

For our second validation analysis, we use the constant price index in all years in the food Engel
equation (9); i.e we assume, naively, that P t

F = P t
N = 1 for all t. Because U.S. inflation is positive

in most years, we expect that by using the constant price index as the deflator, we will overstate
household real income. This implies that our year-dummy estimates under constant price index
should be mostly positive.

To implement this analysis, we use household nominal income in the estimation of equation
(9), and include the full set of control variables. Column (1) of Table 2 reports the results. The
estimated log-income coefficient, βF , is similar to Column (2). The coefficient estimates of the
year dummies are all positive in sign, and they are statistically significant starting 2003. These
results provide evidence that our methodology correctly identifies the downward bias of the naive
price index of constant prices. In addition, as illustrated in the left panel of Figure 4, the RMSB
under constant prices is 0.247, over three times as high as the RMSB of CPI. This shows that our
methodology also correctly ranks CPI as a more preferable price index than constant prices.

different countries report their βF estimates to be between -0.2 and -0.05. In turn, we will discuss the coefficient
estimates of ln(PF /PN ) and ln(PF /PN )2 in sub-section 6.2 below.
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Figure 4: Root Mean Squared Bias by Price Index

Including constant price No constant price

Notes: This figure presents estimates of root mean squared bias under different income deflators. The left panel
shows results including constant price (treating nominal as real income), while the right panel omits constant price
for ease of comparing the other price indexes.

6.2 Results for OPI-M

Figure 5: Price indexes 1995-2015

Notes: This figure shows all price indexes used in our analysis. Prices are normalised to one in 1995. We only include
years in which we have PSID data on household expenditures. Before 1997, PSID data is available every year, but
after 1997, we have only odd years.

Overall Price Level. We begin by displaying the aggregated OPI-M measures along with CPI in
Figure 5. In this figure, “OPI-M1” is the weighted geometric mean of the food and non-food prices
given by equation (24), where the weights are CPI weights, and likewise for “OPIM-2”. While the
aggregation is not used in our formal analyses with the food Engel curve estimation, it provides a
concise way to show the differences between OPIs vs. CPI and to highlight the main features of our
analytical framework.

The OPI-Ms incorporate gains from trade into over-time price changes by taking advantage of
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rich product-level trade data, and we see, from Figure 5, that both aggregated OPI-M measures
follow different paths vs. CPI. First, both aggregated OPI-M measures are below CPI. This is consis-
tent with the core message of the gains-from-trade literature that consumers experience lower price
increases once gains from trade are taken into account. Second, the aggregated OPI-M2 measure is
below the aggregated OPI-M1 measure, and this is consistent with Redding and Weinstein (2020).
Finally, we also see that, strikingly, prices fell, relative to 1995, throughout the late 1990’s and the
early 2000’s, according to both aggregated OPI-M measures. This likely reflects the expansion of
global trade that we previously discussed for Figure 2.

Figure 5 clearly shows that the aggregated OPI-M measures are different from CPI, but does
not clarify whether such differences are “good” or “bad”. Specifically, while the lower levels of the
aggregated OPI-M measures could help alleviate the CPI’s upward bias, on average, they may
also introduce downward biases, as illustrated by the naive price index of constant prices that we
discussed in the previous sub-section. What empirical evidence do we need, to conclude that the
OPI-M indices may be preferable to CPI, overall? What other empirical evidence do we need, to
respect the striking claim that, during the late 1990’s and early 2000’s, prices in the U.S. may have
actually decreased, because of gains from trade? To help answer these questions, we turn to our
analyses using the food Engel curve.

Estimated Parameter Values Rows (3) and (4) of Table 2 report the results of the estimation
of regression (9) with OPI-M1 and OPI-M2. In our data, the variation across households in income,
demographics and food consumption identifies the coefficient of log income. Our data also has
variation across county-by-year in the prices of food and non-food, and this variation is rich enough
to separately identify the coefficients of log relative food price and its square, an innovation relative
to previous studies. All coefficient estimates are statistically significant. Parameter estimates do
not change much across specifications in Table 2, because the change of national-level indices from
CPI to OPI-M does not affect the cross-household variation in our data, nor does it affect the
county-by-year variation much, as shown by equation (25).

Our estimation results in Table 2 allow us to recover all the key parameters of the AIDS pref-
erences of (2). It is reassuring that our estimates of Engel curve coefficients are similar across
specifications. We get similar preference parameters regardless of which set of estimates we employ.
For example, for OPI-M2, the estimated coefficient of log income is β̂F = −0.0825, and using the
coefficients of relative price and its square, equation (12) implies that γ̂ = −1.0812, α̂F = 13.8062.

We now discuss the intuition of these parameter values. First, we have discussed our βF estimate
in the previous sub-section. Second, βF , γ and αF all affect household decisions on the margin.
Using equations (5) and (6), we obtain that the average household in our data has the own price
elasticity of −0.50 and the income elasticity of 0.33 (see Appendix B for the details). These elasticity
estimates are reasonable and comparable to the literature.16 Finally, while only βF enters into the
calculation of the bias in equation (10), γ and αF are jointly estimated with βF in regression (9),

16e.g. Nakamura et al. (2016) estimate that the income elasticity ranges from 0.6-0.7 and the own price elasticity
ranges from -0.8 through -0.6.
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and so βF , γ and αF all matter for the bias. In Section 6.4, we use these estimates to show how
they can be used for counterfactual analyses.17

Figure 6: Year Dummies Over Time Across Price Indexes

CPI OPI-D

OPI-M1 OPI-M2

Notes: This figure presents the year dummies in Appendix Table A.3. The data period is 1995 to 2015. The year
dummies are normalized to zero in 1995. We include 95% confidence intervals.

Ranking Price Indices We plot the estimated year dummies from Table 2 by price index for
each year in Figure 6, as well as their 95 percent confidence intervals. We already reported the
RMSB of these price indices in Figure 4, where in the right panel, we remove constant prices, to
highlight the comparison between OPI-M1 and OPI-M2 vs. CPI. The main features of Figures 4
and 6 are as follows.

First, as described above, the year dummies with CPI are consistently negative and they are
significantly different from 0 for 7 out of 11 years, indicating that it overstates prices and understates
real income. Second, with OPI-M1, the year dummies tend to be smaller in magnitude than with
CPI, and they are statistically different from 0 for 5 out of 11 years. The RMSB shrinks by 30%
relative to CPI, from 0.070 to 0.049. Lastly, with OPI-M2, the year dummies are statistically

17Note that the identification of α0 does not matter for identifying the biases in measured price indices, which is
what we are examining here. This is because the level of α0 does not affect household decisions on the margin. This
feature, however, makes it challenging to identify α0 from a regression like (9), as noted in the literature, e.g. Almås
et al. (2018). However, α0 drives the level of model predicted household food consumption share. Because we identify
all the other AIDS parameters, we can choose α0 by matching the level of food expenditure shares.
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indistinguishable from 0 for 10 out of 11 years, and the RMSB shrinks by an additional 39% relative
to OPI-M1, to 0.030.

These results show that the over-time price changes computed from product-level trade data,
OPI-M, tend to track the empirical patterns of U.S. household consumption choices better than
official CPI statistics. Because OPI-M incorporates gains from trade, our results provide evidence
that U.S. households behave as if they take such gains into account when they make consumption
decisions. In particular, the year dummies of OPI-M2 for 1999, 2001 and 2003 are all statistically
indistinguishable from 0, implying that the U.S. households behaved in these years as if the gains
from trade were so large that the overall price level decreased relative to 1995, as ilustrated in Figure
5.

The Components of OPI-M Our best performing price index is OPI-M2. OPI-M2 involves
three main components: changes in unit values of existing varieties (intensive margin), changes in
the set of varieties being imported (extensive margin), and a correction for unobserved domestic
production (import share). We now discuss how these components contribute to its good perfor-
mance.

First, Section 4 shows that OPI-M1 and -M2 have exactly the same extensive margin and the
same import-share adjustment, but OPI-M2 incorporates the RW correction for the intensive margin
that is designed to better measure taste changes and quality changes over time.18. Therefore, the
RW correction is solely responsible for the better performance of OPI-M2 vs. OPI-M1, reducing
the number of statistically significant year dummy estimates from 5 to 1, and then shrinking the
RMSB by 39%. This finding is complementary to the result in Redding and Weinstein (2020) that
the RW procedure helps correct the upward bias in the FBW procedure.

We then show the contribution of the extensive-margin component, by dropping it from OPI-M2,
and then use this hypothetical index without variety entry and exit in regression (9). From Figure
7, we see that the removal of variety entry and exit from OPI-M2 more than doubles the RMSB,
from 0.030 to 0.072, which is higher than the RMSB of CPI.19 These findings are consistent with
the previous studies that emphasize new foreign varieties as an important contributor to gains from
trade (e.g. Feenstra (1994); Broda and Weinstein (2006)).

Next, we examine the contribution of the import-share-adjustment component, by, again, drop-
ping it from OPI-M2. The resulting index is for import prices only, and we use it in the estimation
of regression (9). The year dummy estimates are positive and mostly statistically significant, sug-
gesting that the import price component of OPI-M2 understates prices and overstates real income
(see Appendix Figure A.2). In addition, Figure 7 shows that the downward biases are so large that
the RMSB almost triples, to 0.081, which, again, is larger than the RMSB of CPI. These results
suggest that the import price component of OPI-M2 is overly optimistic about gains from trade.
To see the intuition, recall that domestic expenditure shares for the US sample generally decrease

18Redding and Weinstein (2020) measure varieties as bar codes and interpret their results to reflect relative taste
changes. Our results may reflect other relative changes, such as quality, because our variety measure of HS6 by
exporter is broader than bar codes.

19We show the biases implied by the year dummy estimates in Appendix Figure A.2, to keep our exposition concise.
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over time (Figure 2), and so, imported expenditure shares generally increase. This implies that the
relative price of imports decreases over time, and so the import price component of OPI-M2 is lower
than OPI-M2. Our results thus provide empirical evidence that looking at the import price index
alone may exaggerate gains from trade.

Finally, we further clarify the contribution of the intensive-margin component by removing it
from OPI-M2, and then use this hypothetical index without any price data in regression (9). From
Figure 7, we see that the RMSB increases by more than a factor of 5, to 0.169, which is more
than twice as large as the RMSB of CPI. This finding shows that the product-level price data
embedded in the intensive margin component is more important for OPI-M2 than the extensive-
margin component and the import-share-adjustment component. While it is a simple point that
a good price index needs good prices data, this point is important for interpreting our results for
OPI-D and its extension, OPI-D2, below.

Figure 7: Mean Squared Bias by OPI-M2 Components

Notes: This figure presents the average bias in OPI-M2, leaving out each of the three OPI-M components one by
one. These components are the correction for new and exiting varieties, changes in the import share of the economy,
and observed change in prices for continuing varieties. The data period is 1995 to 2015.

Relating OPI-M to the CPI literature We have demonstrated, so far, that both OPI-M1
and OPI-M2 are more consistent with the patterns of food consumption by U.S. households than
official CPI. We now clarify the intuition of these differences between CPI and OPI-M. We begin by
briefly discussing how CPI is constructed in the United States. The U.S. constructs its CPI using
a two-tier structure. The upper tier consists of about 270 ELI’s (Entry Level Items), and the lower
tier consists of individual items within ELI. The prices of individual items are collected by Bureau
of Labor Statistics employees at retail outlets, and quantity data are available at the ELI-level, but
not at the individual-item-level (e.g. Klenow and Kryvtsov, 2008). Therefore, item-level prices are
aggregated into ELI-level via simple geometric mean, and then across ELI’s via weighted geometric
mean (e.g. Nakamura and Steinsson, 2008).

The resulting CPI index may deviate from the true prices that households use in their consump-
tion decisions for the following reasons. First, an individual item may be replaced by a higher-quality
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item. This is not always easy to spot, and even if spotted, could be difficult to correctly adjust (e.g.
Moulton, 1996). Second, new goods and new varieties may fail to show up in the CPI sample, and
even when they do, the CPI procedure may not fully capture their effects on true household prices
(e.g. Hausman, 2003). These two issues are widely recognized in the studies of U.S. CPI, commonly
referred to as the quality bias and new-goods bias in that literature.

On the other hand, the OPI-M indices are explicitly designed to capture the effects of new
varieties20 and quality improvements if they originate in foreign countries. Consider one of the
tradable sectors in the categories of food, F , or tradable merchandise, G. Products in this sector
are differentiated into a number of varieties, some sourced from abroad.

Suppose, first, that some foreign country experiences a trade liberalization, and starts to export
new varieties, and that the prices of existing varieties remain unchanged. In this scenario, consumers
gain from trade, and the true price index they face decreases. While CPI may have difficulty with
the new-variety effect, the extensive-margin component of OPI-M is explicitly designed to measure
this effect. Suppose, alternatively, that some foreign country increases the quality of its existing
varieties. In this scenario, consumers again gain from trade and experience lower prices, adjusted
for quality. While CPI may have difficulty with the quality effect, this effect may be captured
in the intensive-margin component of OPI-M2 via equation (22), because the import-value shares
of the higher-quality existing varieties are likely to increase.21 Together, the fact that OPI-M is
able to capture both new goods and quality improvements originating from abroad – potentially a
large source of U.S. consumer welfare gains in recent years – explains why OPI-M better tracks the
empirical patterns of U.S. households’ food consumption choices than CPI.

6.3 Results for OPI-D

We start with the aggregated OPI-D measure, whose construction is analogous to the aggregated
OPI-M measures discussed in the previous subsection. Figure 5 shows that the aggregated OPI-D
measure closely follows the path of the CPI. Note that OPI-D uses the domestic component of
the CPI to measure domestic prices, as shown in equation (26). This component is higher than
the CPI itself because the official U.S. import price index is lower than the CPI (see Appendix
XXX). However, OPI-D adjusts the domestic price using the domestic expenditure shares, and this
adjustment pulls down the overall index because domestic shares tend to decrease over time due to
expanding trade, as we showed earlier. In the end, the effect of using the domestic price component
slightly dominates, and so the aggregated OPI-D measure is slightly higher than the CPI, as shown
in Figure 5.

Column (5) of Table 2 reports the results of regression (9) with OPI-D. The estimated coefficients
of log income, log relative food price and (to a slightly lesser extent) its square are all similar to
previous price indices, in columns (2) through (4). The estimated year dummies and their 95 percent

20Our terminology of “new variety” is in the context of trade models, and corresponds to both “new good” and “new
variety” in the CPI literature.

21We continue to assume, as in section 4, that the over-time taste and quality changes within the common set,
across all imports, are zero on geometric average.
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confidence intervals, on the other hand, are plotted in Figure 6. We see that, while these estimates
are larger than those with CPI in magnitude, the differences are small, and they are statistically
different from 0 for 6 out of 11 years. As shown in Figure 4, the RMSB of OPI-D is 0.072, slightly
larger than the RMSD of CPI, and much larger than the RMSB of OPI-M. This is not driven
by the adjustment using domestic expenditure shares, because these shares are symmetric to the
import-shares-adjustment component of OPI-M, as shown in equation (18). Instead, it is driven
by the use of the domestic price component of CPI. As we discussed previously, the U.S. CPI has
difficulty with the new-variety effect and quality effect, but the import price component of OPI-M
is better able to capture these effects. As a result, the import price component of OPI-M better
reflects the way U.S. households make consumption decisions than the domestic price component
of OPI-D, and this explains why OPI-D has a much larger RMSB than OPI-M. As we discussed
previously, a good price index needs good price data.

6.4 Trade Shocks and Cost of Living Increases

Our estimation identifies the parameters of the AIDS preferences, so we can also use OPI for back-
of-the-envelope calculations for cost of living changes in simple counterfactuals. We use our best
performing price index, OPI-M2. The only parameter that remains to be pinned down is α0 which
cannot be identified from our food Engel curve estimation, and is not required for the preceding
analysis of the biases in prices. However, we need it to pin down welfare levels in this subsection.
We specifically obtain α̂0 = −156.4, by matching the model predicted 99th percentile of household
food consumption share to the data.22

Motivated by recent political discussions in the United States, we consider a 10% universal
increase in the price of imports. As our baseline, we use 2015, one year before Donald Trump was
elected for the first time. In this counterfactual, we assume that domestic prices remain unchanged.
These counterfactual price changes and the data of initial domestic expenditure shares allow us to
solve for the change in the sectoral price index, P̂ t

s , using equation (18). Households optimally shift
consumption between imports and domestic goods in our counterfactual. Since domestic expenditure
shares are different in Food and Non-food, their prices respond differently. In particular, OPI-M2
increases by 0.9% for Food and 0.8% for Non-food.23

We then use the counterfactual changes in OPI-M2 to compute the increase in cost of living, or
the income required to achieve the pre-shock utility at post-shock prices. Overall, we would need to
increase a household’s post-shock income by around 0.8% to deliver pre-shock utility. Since we have
non-homothetic utility, each household gets its own price index. Poor households are hurt slightly
more by the tariff than rich households. This is because poor households consume a larger share of
food, and food prices rise slightly more than non-food prices. We show how the increase in cost of

22We fit a smooth local polynomial to food expenditure share as a function of income for our 1995 data. Then we
use the predicted food expenditure share of the 99th percentile of income as our target for the model. The reason
we use a top percentile as a target is that our Engel curve is steep (in line with the literature). If we target lower
percentiles we predict negative food expenditure shares for the highest incomes.

23The overall category price increases are small as the United States has large domestic expenditure shares.
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living varies with income in Appendix Figure A.3’s top panel.
To further explore this mechanism, we show how our conclusions would change if the rise in

import prices were applied only to food imports, and also if it were applied only to imports of goods
other than food. If only food import prices rise, the cost of living for households three standard
deviations below mean income rises by just over 0.2%, while households three standard deviations
above mean income are nearly unaffected by the price change as they spend so little on food.
Overall, the welfare affects are small, as food makes up only a fraction of household expenditures.
If the rise in import prices is only on non-food, then the model predicts a larger fall in welfare for
households with high income, as they consume a larger share of non-food. These results are plotted
in Appendix Figure A.3’s middle and bottom panel.

7 Extension: OPI-G

In this section, we explore whether our analytical framework can shed light on which specific model
specifications in the gains-from-trade studies that use general-equilibrium models deliver predictions
that track observed household consumption decisions more closely. We do so by constructing open-
economy indices that correspond to the following two commonly used specifications in this literature.

Theoretical Framework The first model specification follows the same setting as Sections 3 and
4, except that it endogenizes all prices by making the additional assumption that P̂D = ŵ for every
variety in the Home country, where w is the nominal wage. This specification corresponds to the
multi-sector model in Costinot and Rodríguez-Clare (2014), and we call the resulting open-economy
price index OPI-G1, where “G” refers to general-equilibrium models. Specifically, we have

P̂ t
s = ŵt(π̂t

D,s)
1

σs−1 . [OPI-G1] (27)

Comparing equation (27) with equation (18), we see that the only difference between OPI-G1 vs.
OPI-D is that we have replaced the domestic price in OPI-D, P̂ t

D,s, which is observed from the data,
with its general-equilibrium model prediction of ŵ.

The second model specification follows the multi-sector model with input-output linkages à la
Caliendo and Parro (2015), which adds the following element into the specification of OPI-G1: sector
s = {1, ..., S} uses the outputs of all the sectors in the economy, including itself, as intermediate
inputs. Specifically, assume that the production cost of sector s = {1, ..., S} is a Cobb-Douglas
aggregate of domestic factor services, with share γs, and the intermediate-input bundle, with share
1− γs. The latter is, in turn, a Cobb-Douglas aggregate of the price indices of all the sectors in the
economy with shares αks, k = {1, ..., S} and

∑S
k=1 αks = 1. The input-output table of the economy

is then the S×S matrix A, whose element on row k−column s is (1−γs)αks. The sector-level price
index of each sector s = {1, ..., S} can be then expressed as:

P̂ t
s = ŵt

[
S∏

k=1

(
π̂t
D,k

) α̃ks
σk−1

]
. [OPI-G2] (28)
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Here, α̃ks represents the elements of the Leontief-inverse matrix of the economy; i.e it is the row
k−column s element of (I −AT)−1, where I is the identity matrix and A⊺ is the transpose of the
input-output matrix A. The parameters α̃ks reflect the importance of sector k as an intermediate
input for the production of sector s. To see the intuition of α̃ks, suppose that import prices fall
in sector k, such that π̂t

D,k < 1. Without input-output linkages, this change lowers sector k’s

own price index, P t
k, by

(
π̂t
D,k

) 1
σk−1 , as given in equation (27), and has no impact on the other

sectors’ price indices. With input-output linkages, however, the other sectors s ̸=k experience price

decreases of
(
π̂t
D,k

) α̃ks
σk−1 , where α̃ks > 0, as they all use sector k’s outputs as inputs. In addition,

the effect on sector k’s own price index is amplified to
(
π̂t
D,k

) α̃kk
σk−1 , where α̃kk > 1 captures the

extent of the amplification, because sector k uses all the other sectors’ outputs as inputs. Comparing
equation (28) with (27), we see that the only difference between OPI-G2 vs OPI-G1 is the addition
of input-output linkages in (28).

Equations (27) and (28) give the sectoral prices of OPI-G1 and -G2, and these prices can then
be aggregated into the group level of food, F , and non-food, N , using equation (24).

Data and Empirical Results In order to construct the OPI-G indices, we interpret the variable
of ŵt as over time changes in the labor cost of production for the U.S. economy, normalized by
over-time changes in total-factor productivity (TFP).24 We thus obtain labor cost data from STAN
and TFP data from the Penn World Table (PWT) for the U.S. by year. Additionally, we obtain
the data for the input-output linkages from WIOD.

When we use OPI-G1 and OPI-G2 in the estimation of regression (9), we again obtain similar
coefficient estimates for log income, log relative food price and its square (see Appendix Table XXX).
We find that OPI-G1 has the RMSB of 0.104, while OPI-G2 has the smaller RMSB of 0.085. These
results suggest that the input-output linkage is a useful model element of trade theory. Specifically,
while input-output linkages are absent from the underlying model of OPI-G1, they are a central
feature of OPI-G2. As we discussed earlier, input-output linkages can amplify the direct effect of
trade shocks in a sector, lowering the price there, because all sectors in the economy use the outputs
of that sector as inputs. Therefore, the addition of input-output linkages is solely responsible for
reducing the RMSB of OPIG2 by 18% relative to OPI-G1. This finding implies that the additional
model element of input-output linkages delivers gains-from-trade predictions that better track the
data patterns of U.S households’ food consumption choices.

Our results also show that the RMSB of both OPI-G indices is larger than CPI, and they
highlight the conundrum we face in interpreting the model variable of ŵt in the data. On one hand,
our interpretation, over time changes of production costs, is consistent with the underlying models,
but it creates the challenge in the data that the computation of OPI-G does not use any price data.
Specifically, the use of production costs vs. domestic prices is solely responsible for increasing the
RMSB of OPI-G1 by 44%, almost one half, relative to OPI-D. This challenge is the main reason

24That is, ŵt is proportional with changes the wage rate, but inversely proportional with productivity.

28



that the RMSB of OPI-G is larger than CPI; i.e it is difficult to come up with a good price index
without using price data. On the other hand, an alternative interpretation is that, because ŵt moves
with the change of a nominal variable over time and routinely normalized to 1 in the literature,
it can be interpreted as general inflation in the data, such as CPI. This interpretation, however,
faces the challenge in theory that, because “general inflation” is outside of the underlying models,
it is unclear whether the use of CPI, or other common measures of general inflation in the data,
is genuinely consistent with the models. Additionally, any mismeasurement in productivity growth
influences ŵt, creating another empirical challenge. We hope that future work can address both
challenges in the empirical implementation of OPI-G.

8 Conclusion

Recent years have witnessed rapid growth in the studies that predict how much consumers gain from
international trade. In contrast, our knowledge remains limited as to what extent the gains-from-
trade predictions by this literature are consistent with observed household consumption decisions.
In addition, this literature has used a number of model specifications and generated a range of gains-
from-trade predictions. It is unclear whether specific model elements render the overall predictions
more consistent, or less consistent, with household consumption decisions.

In this paper, we incorporate the core predictions from this literature about real consumption
into over-time changes in open-economy price indices, or OPI indices. We then use the food Engel
curve, a strong empirical regularity in micro household survey data, to quantify the deviations of
OPI indices from the true price index that households use to deflate their income, and compare
them with the deviations of CPI. We show that the OPI indices tend to follow the true price index
more closely than official CPI. We also show that the overall gains-from-trade predictions tend to
better track household consumption decisions if we allow for multiple industries and input-output
linkages in quantitative general-equilibrium models, or if we correct for demand residuals in the
computation of import-price indices as in Redding and Weinstein (2020). Our results provide a
validation check of the core predictions, as well as specific model elements and specifications, of the
gains-from-trade literature.

More broadly, official CPI is extensively used for policy. While there is a broad agreement that
CPI does not track household prices well over time due to quality and new-goods biases, there is no
consensus about better alternatives. For example, Meyer and Sullivan (2009) subtract an ad-hoc
0.8% from the growth in U.S. CPI each year in their analyses of poverty25 because they do not
have a better alternative. In turn, our results establish a connection between the gains-from-trade
literature and the research on official CPI. The sufficient-static approach (e.g., ACR), an important
part of the gains-from-trade literature, provides a solution to the quality bias and new-goods bias
of official CPI, both of which are difficult problems for the CPI literature. By operationalizing the
complementarity between sufficient statistics from commonly-used trade theories and official CPI

25Meyer and Sullivan (2009) use CPI-U-RS, which is very similar to what we have used, CPI-U, after the late
1990s.
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in a transparent and tractable way, our OPI-D indices provide one potential alternative to be used
alongside CPI for policy analysis and discussion.
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Appendices for “Assessing the Aggregate Price Effects
of Trade Using the Food Engel Curve”

Farid Farrokhi, David Jinkins, Chong Xiang

A Data Appendix

A.1 Additional Details about Data

A.1.1 BACI-CEPII data

Our disaggregated variety-level trade data come from BACI-CEPII, which has annual values and
quantities of bilateral trade at the level of 6-digit Harmonized System (HS6) codes. We use BACI
data to compute variety-level unit values and import-value shares, the variables ptj,gs and λt

j,gs in
equations (20) - (23), by defining a variety j as a pair of export country and HS6 product.

While the computation of the OPI-M indices accommodates the change of the variety set within a
given SITC good over time, it requires that the common set of varieties be non-empty. In addition,
the computation of the intensive margin of OPI-M2 involves taking the simple geometric mean
within the common set, which might be an issue if the common set contains too few varieties. For
these cases, we thus merge certain SITC goods in the raw BACI data, to ensure that the common
set contains at least 20 varieties for each SITC good by year. Table A.1 lists the SITC goods that
are subject to this consideration in merging the data for the U.S.

The OPI-M indices incorporate gains from trade into over-time price changes by taking advan-
tage of rich product-level trade data. In practice, the variety-level prices computed from such data
are typically noisy (e.g. General Accounting Office (1995)), and our data is no exception. For
example, our U.S. imports data cover 5,354 unique HS6 products exported by 218 countries, and
over 89,000 varieties (export country by HS6) are present in both 1996 and the base year of 1995.
Among these varieties, the absolute values of log price changes, over 1995-1996, have the mean of
0.76 and the standard deviation of 1.05. Following common practice in previous studies, e.g. Red-
ding and Weinstein (2020), we exclude the varieties with large price changes from the computation
of the average price changes within the common set in the intensive margin, and treat them as
variety entry and exit in the extensive margin instead. Our idea is that, if the exclusion removes
the varieties with noisy price changes, then the remaining varieties should show similar aggregate
moments in their price changes as compared with high-quality price data. Using one such data set,
the raw data used in the construction of U.S. CPI, Klenow and Kryvtsov (2008) show that the mean
of 8-month changes in log prices in absolute value is 0.11. Through experimentation, we find that if
the exclusion cutoff is set to the median changes in log prices in absolute value, relative to the base
year, then the mean value of one-year log price changes (absolute values) in the common set in our
data is 0.13, close to the value of 0.11.26

26We have experimented with other exclusion cutoffs and obtained larger mean values. e.g. it is 0.23 for the U.S.
if we use the 75th percentile as the cutoff, and 0.34 if we use the 90th percentile.
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Table A.1: Merging SITC Goods Featuring Too Few Varieties in the U.S.

Old SITC
code

New SITC
code

New SITC
sigma

New SITC Name

23 22 4.71 MILK AND CREAM AND MILK PRODUCTS OTHER THAN BUTTER
41 47 2.2 CEREAL MEALS AND FLOURS, N.E.S.
43 47 2.2 CEREAL MEALS AND FLOURS, N.E.S.
231 292 1.55 CRUDE VEGETABLE MATERIALS, N.E.S.
244 246 1.92 WOOD IN CHIPS OR PARTICLES AND WOOD WASTE
247 246 1.92 WOOD IN CHIPS OR PARTICLES AND WOOD WASTE
261 265 1.98 VEGETABLE TEXTILE FIBERS (OTHER THAN COTTON AND JU
263 265 1.98 VEGETABLE TEXTILE FIBERS (OTHER THAN COTTON AND JU
264 265 1.98 VEGETABLE TEXTILE FIBERS (OTHER THAN COTTON AND JU
274 278 4.76 CRUDE MINERALS, N.E.S.
277 278 4.76 CRUDE MINERALS, N.E.S.
281 278 4.76 CRUDE MINERALS, N.E.S.
283 285 2.66 ALUMINUM ORES AND CONCENTRATES (INCLUDING ALUMINA)
284 285 2.66 ALUMINUM ORES AND CONCENTRATES (INCLUDING ALUMINA)
287 333 27.85 PETROLEUM OILS AND OILS FROM BITUMINOUS MINERALS,
289 285 2.66 ALUMINUM ORES AND CONCENTRATES (INCLUDING ALUMINA)
322 321 2.18 COAL, PULVERIZED OR NOT, BUT NOT AGGLOMERATED
325 321 2.18 COAL, PULVERIZED OR NOT, BUT NOT AGGLOMERATED
333 333 27.85 PETROLEUM OILS AND OILS FROM BITUMINOUS MINERALS,
342 335 2.79 RESIDUAL PETROLEUM PRODUCTS, N.E.S. AND RELATED MA
343 335 2.79 RESIDUAL PETROLEUM PRODUCTS, N.E.S. AND RELATED MA
344 335 2.79 RESIDUAL PETROLEUM PRODUCTS, N.E.S. AND RELATED MA
712 718 1.23 POWER GENERATING MACHINERY AND PARTS THEREOF, N.E.
751 751 2.8 OFFICE MACHINES
752 751 2.8 OFFICE MACHINES
761 751 2.8 OFFICE MACHINES
783 783 2.98 ROAD MOTOR VEHICLES, N.E.S.
785 783 2.98 ROAD MOTOR VEHICLES, N.E.S.

Notes: This table reports how we merge and aggregate SITC goods featuring a common set with less than 20 varieties
in the U.S.

A.1.2 STAN data

We obtain OECD STAN data on gross production, exports and imports by sector by year. The
STAN sectors are aggregate ISIC (International Standard Industrial Classification) version 4. We
have 1 sector for the food category, F , which combines agricultural and manufactured food, and 11
sectors for the category of tradeable merchandise, G. Table 1 in the main body of the paper lists
the brief descriptions and ISIC-revision-4 codes of our 12 tradeable sectors, one for the category of
food, F , and 11 for non-food merchandise, G.

Our STAN data provide the values of sector-level domestic and imported expenditure shares,
πD,t
s and πM,t

s = 1− πD,t
s , in equation (18), with πD,t

s corresponding to gross output minus exports
divided by apparent consumption, which is gross output minus exports plus imports.

We encounter missing gross output data for 1995 and 1996 in sectors 31-32 (furniture & other
manufacturing) and 01-03 (food & agriculture) for the U.S. To address this issue, we regress gross
output on values of imports and exports for each sector-by-country using the years with non-missing
data. The R2 of these regressions are high (e.g. it is 0.96 for U.S. 01-03. We extrapolate the missing
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gross output values using the regression coefficients and the data for imports and exports.

A.2 Final consumption and intermediate use

CPI and the food Engel curve are based on household consumption data, while many goods in the
trade data, which are used to compute the OPI indices, are not directly purchased by consumers
(e.g. iron ore, crude oil). To address this concern, we use the consumption shares from WIOD to
compute sectoral weights, βs, when we aggregate across the non-food merchandise sectors in the
category G (e.g. equation 24).

We illustrate how WIOD based consumption shares differ from shares based on absorbtion or
“apparent consumption” from STAN. To construct the apparent consumption measures, we obtain
the sectoral shares within category G using total absorption (gross output minus exports plus
imports), and then multiply these relative shares by the CPI weight of category G. While the
WIOD- and STAN-based consumption shares differ for individual non-food merchandise sectors,
they have the same cross-sector aggregate within G by construction.

Figure A.1: Sectoral Consumption Shares, WIOD Data vs. STAN Data, U.S.

Notes: This figure shows the weights of each of the eleven non-food tradeable sectors.

Figure A.1 plots βs, based on WIOD data, against the STAN-based consumption shares by year
by sector, for the U.S. Mining has sizable apparent consumption and its STAN-based consumption
shares range from roughly 2% to 4%. However, most of its goods are intermediate goods, and
so its WIOD-based consumption shares are close to 0. We see a similar pattern for the sectors
of Wood and Paper and Metals. This implies that the sectors for which intermediate goods are
less important, such as Textile and Apparel and Transport Equipment, have larger WIOD-based
consumption shares than STAN-based ones. Overall, Figure A.1 illustrates that WIOD data assign
low consumption shares to the sectors largely producing intermediate goods.
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A.2.1 Other Data

Our data on input-output linkages come from WIOD (World Input-Output Database). We use
WIOD to compute the Leontief-inverse matrix, and obtain the values of its elements, the variables
α̃ks in equation (28).

A.3 Additional Details about Parameter Values

A.3.1 Industry-Mean Substitution Elasticity for OPI-M

As discussed in Sections 4 and 5, we use goods-specific substitution elasticities, σg, to compute the
OPI-M indices, and one may be concerned about the large number of parameter values involved.
In this sub-section, we construct the OPI-M indices with sector-level substitution elasticities, σs,
instead. To do so, we maintain the same goods layers within sectors as before, and apply σs to
the goods-level price indices. This change affects the extensive margins of both OPI-M indices, as
shown in equation (20), as well as the intensive margin of OPI-M2, as shown in equation (20) and
(22)-(23). Meanwhile, this change has no effect on the intensive margin of OPI-M1, as shown in
equations (20) and (21), or the import-share adjustment of both indices, as shown in equations (18).

We obtain similar year-dummy estimates and similar average biases. The correlation coefficient
for year-dummy estimates across OPI-M1 and -M2 is 0.78. The RMSB of OPI-M1 is 0.047 (vs.
0.049 in our main specification), and that of OPI-M2 is 0.035 (vs. 0.030).

A.3.2 Industry-level Trade Elasticities across the Literature

Table A.2 lists the values of the trade elasticity, θs = σs−1, as we use in this paper, and those used
in a few studies in the literature. It also reports the mean values of θs for each study, as well as the
correlation coefficients of these vectors of θs.
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Table A.2: Trade Elasticity Estimates across Select Papers

Ours, Imbs and Giri Imbs and Caliendo and
Sectors based on BW Mejean et al (2021) Mejean Parro (2015)

(Feenstra) (CP)

Food & Agriculture 2.9 6.1 3.6 4.0 2.6
Textile and Apparel 2.4 6.0 4.4 5.7 5.6
Wood and Paper 1.6 3.2 3.6 12.4 10.0
Refined Petroleum 8.0 8.5 41.8 51.1
Chemicals 2.1 4.2 3.8 5.2 4.8
Plastics 0.9 3.5 4.1 2.4 1.7
Minerals 1.0 4.7 5.1 1.7 2.8
Metals 4.5 3.8 7.0 13.1 6.1
Machinery and Electronics 1.0 6.0 3.3 12.5 8.2
Transport Equipment 2.3 4.9 4.5 5.5 0.7
Furniture & Other Mfg. 1.0 3.6 4.5 7.7 5.0
Mining 25.6 9.6 24.5 15.7

Mean 4.4 5.3 4.4 11.4 9.5

Correlation Matrix 0.8 0.6 0.6 0.4
0.4 0.7 0.6

0.4 0.2
0.9

Notes: This table reports each industry’s trade elasticity estimates, θs, as we use in this paper based on “BW”

corresponding to (Broda and Weinstein, 2006), and across select papers in the literature: (Imbs and Mejean, 2015)

based on Feenstra’s procedure and based on CP, Caliendo and Parro’s procedure, Giri et al. (2021), and (Caliendo

et al., 2015). In case that two or multiple industries in another paper map to one industry in ours, we use the average

across those multiple industries. The table, also, shows the mean value of estimates in each column, as well as the

correlation matrix between any pair of columns.

The mean of our θs is 4.43, close to the often cited benchmark value of 4 in Simonovska and
Waugh (2014). It is also similar to the mean values in Imbs and Mejean (2015) (Feenstra procedure)
and Giri et al. (2021). In addition, our vector of θs is fairly well correlated with the ones in literature,
with the correlation coefficients between our θs and the literature’s θs being comparable to those
among the literature’s θs.

B Theory Appendix

B.1 Formulas for OPI-M

Nested CES Structure. Sector-level consumption bundle aggregates imported and domestic
bundles in the following CES fashion:

Ct
s =

[ (
CM,t
s

)(σs−1)/σs
+
(
CD,t
s

)(σs−1)/σs

]σs/(σs−1)

where σs is the elasticity of substitution between imported and domestic sector–level bundles. In
turn, the imported bundle of sector s, CM,t

s , aggregates over imported bundle of goods within sector
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s,

CM,t
s =

[ ∑
g∈Ωs

(
CM,t
gs

)(σM
s −1)/σM

s

]σM
s /(σM

s −1)

where σM
s is the elasticity of substitution between imported bundle of goods within sector s. The

imported bundle of good g in sector s aggregates over varieties j,

CM,t
gs =

[ ∑
j∈ΩM,t

gs

(
ctj,gs

)(σg−1)/σg

]σg/(σg−1)

where σg is the elasticity of substitution between varieties within good g.

Weights in Intensive Margin of the Price Index. Below, we derive the price index that
corresponds to the consumption bundle of the lowest tier, CM,t

gs . Derivations for upper tiers are
similar. To simplify the notation, below we drop superscript M , and subscript gs, and work with:

Ct =

[ ∑
j∈Ωt

(
btj
)1/σ (

ctj
)(σ−1)/σ

]σ/(σ−1)

(B.1)

The associated price index is:

P t ≡ P ({ptj}, {btj},Ωt) =

[ ∑
j∈Ωt

btj(p
t
j)

1−σ

]1/(1−σ)

(B.2)

Share of expenditure on variety j equals:

λt
j ≡ λ({ptj}, {btj},Ωt) =

btj(p
t
j)

1−σ

P 1−σ
t

(B.3)

And, the change to the price index is defined as:

P̂ t =
P ({ptj}, {btj},Ωt)

P ({pt−1
j }, {bt−1

j },Ωt−1)
(B.4)

We only focus on the intensive margin of price changes since our derivations for the extensive
margin is precisely the same as the ones in the previous literature. Focusing on the intensive margin,
suppose the set of varieties purchased in t and t − 1 are the same, Ωt = Ωt−1 = Ω. By equation
(B.3), P t = (λt

j/b
t
j)

1/(1−σ)ptj . Using this expression and the definition (B.4),

P̂ t =
( λt

j/b
t
j

λt−1
j /bt−1

j

)1/(σ−1)( ptj

pt−1
j

)
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Taking logs:

ln P̂ t =
1

σ − 1
ln
( λt

j/b
t
j

λt−1
j /bt−1

j

)
+ ln

( ptj

pt−1
j

)
By reorganizing,

1

ln
(

λt
j/b

t
j

λt−1
j /bt−1

j

) ln P̂ t − 1

ln
(

λt
j/b

t
j

λt−1
j /bt−1

j

) ln
( ptj

pt−1
j

)
=

1

σ − 1

Multiply this equation by (λt
j − λt−1

j ) and sum over varieties j ∈ Ω,

∑
j∈Ω

λt
j − λt−1

j

ln
(

λt
j/b

t
j

λt−1
j /bt−1

j

) ln P̂ t −
∑
j∈Ω

λt
j − λt−1

j

ln
(

λt
j/b

t
j

λt−1
j /bt−1

j

) ln
( ptj

pt−1
j

)
=
∑
j∈Ω

(λt
j − λt−1

j )
1

σ − 1

From
∑

j∈Ω λt
j =

∑
j∈Ω λt−1

j = 1, it follows that
∑

j∈Ω(λ
t
j − λt−1

j ) = 0. Therefore,

ln P̂ t
∑
j∈Ω

λt
j − λt−1

j

ln(λt
j/b

t
j)− ln(λt−1

j /bt−1
j )

=
∑
j∈Ω

λt
j − λt−1

j

ln(λt
j/b

t
j)− ln(λt−1

j /bt−1
j )

ln
( ptj

pt−1
j

)
Hence, the change to price index equals:

ln P̂ t =
∑
j∈Ω

dtj ln
( ptj

pt−1
j

)
where the weight on variety j, dtj , is given by:

dtj =

λt
j−λt−1

j

ln(λt
j/b

t
j)−ln(λt−1

j /bt−1
j )∑

j∈Ω
λt
j−λt−1

j

ln(λt
j/b

t
j)−ln(λt−1

j /bt−1
j )

(B.5)

Equation (B.5) reproduces the weights in OPI-M FBW and RW (equations 21 and 23 in the main
text), with FBW’s weights corresponding to the case under the assumption that btj = bt−1

j .

Equivalence to RW (Redding and Weinstein, 2020) Note that we could rewrite the change
in the price index as follows:

ln P̂ t =
1

σ − 1
ln
( λt

j

λt−1
j

)
+ ln

( ptj/(b
t
j)

1

σ−1

pt−1
j /(bt−1

j )
1

σ−1

)
Here, the shift in our perspective is to think of (btj)

1

σ−1 as a price-equivalent taste parameter. That
is, to think of the whole term ptj/(b

t
j)

1

σ−1 as price itself. For a generic variable x, define x̄ as:

x̄t =
∏
j∈Ω

(
xtj
)αj
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for a set of {αj}j∈Ω satisfying αj > 0 for all j ∈ Ω and
∑

j∈Ω αj = 1. We follow RW and assume
that αj = 1/|Ω| for all varieties j, where |Ω| is the number of varieties in the common set Ω, and
that average taste remains unchanged, i.e, d̄t−1 = d̄t. Therefore,

ln P̂ t =
1

σ − 1
ln
( λ̄t

λ̄t−1

)
+ ln

( p̄t

p̄t−1

)
(B.6)

The above expression reproduces equation (9) in RW. Our equivalent formula is based on recovering
taste parameters, and plug them back as weights. First, recover demand parameters according to:

(
ln btj − ln bt−1

j

)
= ln

[(λt
j

λ̄t

)/(λt−1
j

λ̄t−1

)]
− (1− σ) ln

[(ptj
p̄t

)/(pt−1
j

p̄t−1

)]

Then, replacing the above weights into equation (B.6), which reproduces equation (B.5).

Computation of Income and Own-Price Elasticity From column (4) of Table 2 (the speci-
fication with OPI-M2), we gather that β̂F = −0.0825, δ̂F = 0.0578, and δ̂X = −0.0446. From our

data, we obtain that stF,h,r = 0.123 and
(
ln ptF,r − ln ptN,r

)
= −0.0417. Evaluating the income and

price elasticities using equations (5) and (6) at the mean values, we have:

∂ lnQt
F,h,r

∂ ln yth
= 0.33,

∂ lnQt
F,h,r

∂ ln p̃tF,r
= −0.50. (B.7)

Note that, in the computation of the price elasticity, the term 2δX

(
ln ptF,r − ln ptN,r

)
does not

contribute much, because the values of both δ̂F and
(
ln ptF,r − ln ptN,r

)
are small.

C Additional Tables and Figures
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Table A.3: Year Dummies for Food Engel Curve by Price Specification (Appendix)

Dependent variable: Food Share

Year CPI Constant Price OPI-M1 OPI-M2 OPI-D OPI-G1 OPI-G2

1996 -0.00220 0.000583 -0.000106 -0.00319 -0.00245 -0.00134 -0.00125
(0.00181) (0.00181) (0.00181) (0.00183) (0.00181) (0.00181) (0.00181)

1997 -0.00390∗ 0.000903 -0.000916 -0.00214 -0.00421∗ -0.00271 -0.00250
(0.00188) (0.00188) (0.00189) (0.00187) (0.00188) (0.00188) (0.00188)

1999 -0.00784∗∗∗ 0.0000370 -0.00380∗ -0.00211 -0.00854∗∗∗ -0.00905∗∗∗ -0.00851∗∗∗

(0.00185) (0.00186) (0.00187) (0.00189) (0.00185) (0.00184) (0.00184)
2001 -0.0102∗∗∗ 0.00225 -0.00237 0.00122 -0.0113∗∗∗ -0.0146∗∗∗ -0.0136∗∗∗

(0.00177) (0.00179) (0.00183) (0.00190) (0.00178) (0.00177) (0.00177)
2003 -0.00625∗∗ 0.00914∗∗∗ 0.00589∗∗ 0.00218 -0.00706∗∗∗ -0.0102∗∗∗ -0.00864∗∗∗

(0.00194) (0.00198) (0.00213) (0.00201) (0.00196) (0.00195) (0.00195)
2005 -0.00338 0.0165∗∗∗ 0.00747∗∗∗ 0.00459∗ -0.00353 -0.00693∗∗∗ -0.00475∗

(0.00193) (0.00198) (0.00214) (0.00202) (0.00194) (0.00194) (0.00194)
2007 -0.00687∗∗∗ 0.0178∗∗∗ -0.00185 -0.00330 -0.00634∗∗ -0.0119∗∗∗ -0.00935∗∗∗

(0.00192) (0.00202) (0.00205) (0.00194) (0.00193) (0.00192) (0.00192)
2009 -0.00684∗∗∗ 0.0227∗∗∗ 0.000957 -0.000991 -0.00624∗∗ -0.0115∗∗∗ -0.00886∗∗∗

(0.00201) (0.00210) (0.00212) (0.00201) (0.00207) (0.00201) (0.00201)
2011 -0.00347 0.0300∗∗∗ -0.00443∗ -0.00219 -0.00133 -0.00599∗∗ -0.00245

(0.00188) (0.00196) (0.00189) (0.00188) (0.00192) (0.00188) (0.00188)
2013 -0.000322 0.0360∗∗∗ 0.00358 0.00204 0.00150 -0.00199 0.00145

(0.00190) (0.00204) (0.00206) (0.00192) (0.00190) (0.00190) (0.00190)
2015 -0.00460∗ 0.0342∗∗∗ -0.00547∗∗ 0.000417 -0.00296 -0.00679∗∗∗ -0.00305

(0.00203) (0.00216) (0.00199) (0.00202) (0.00206) (0.00202) (0.00202)

Controls Yes Yes Yes Yes Yes Yes Yes
Base year 1995 1995 1995 1995 1995 1995 1995
Observations 23,906 23,906 23,906 23,906 23,906 23,906 23,906

Notes: Coefficients are year fixed-effect estimates from the corresponding Engel curve regressions with the same
controls as in Table 2, including age, hours, and education of both head and spouse, and number of children.
Robust standard errors in parentheses. Base year is 1995. Stars: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Figure A.2: Bias Over Time: Effect of OPI-M components

OPI-M2 No correction for extensive margin

No correction for import share No price change of continuing varieties

Notes: This figure presents the year dummies in OPI-M2, leaving out each of the three components one by one.
These components are the correction for new and exiting varieties, changes in the import share of the economy, and
observed change in prices for continuing varieties. The data period is 1995 to 2015. Year dummies are normalized to
zero in 1995. We include 95% confidence intervals.
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Figure A.3: Cost of Living Index increase due to 10% increase in import prices
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Notes: This figure shows the income required to achieve the same utility after (1) a 10% universal increase in import
prices, (2) a 10% increase in food import prices, and (3) a 10% increase in non-food import prices. Since this shock
generates an increase in prices for all households, the income required is higher than original income. Panels show
the required income as a ratio with original income.
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